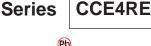
CARDINAL COMPONENTS

Re-Configurable 4 Output PECL Oscillator Applications

- Fixed & Re-Configurable Multi-Frequency Oscillator
- Intuitive software and PC interface
- Easily update system
- Software flexible, quick upgrades and changes
- Industry-standard packaging saves on board space
- Mult. outputs 1 pkg vs. mult. osc & assoc. comp.
 Differential PECL Output

Part Numbering Example: CCE4RE 1A 200.0 - 150.0 / 125.0


CCE4RE	1A	200	150	125
SERIES	PACKAGE STYLE	FREQUENCY P/P-	FREQUENCY A	FREQUENCY B
	1A=14 pin dip	100-400 MHz PECL	0.2 - 200 MHz	0.2 - 200 MHz
	9=9.6x11.4 SMD			

Specifications:	Min	Тур	Мах	Unit
Frequency Range: Output PECL + Output PECL - Output A CMOS Output B CMOS	100 100 0.2 0.2		400 400 200 200	MHz MHz MHz MHz
Available Stability Options:	-50		50	ppm
Supply Voltage:	3.135	3.3	3.465	V
Operating Temperature Range Options:	-40		85	°C
Storage Temperature:	-55		125	°C
Duty Cycle:	40 45		60 55	% %
Start-Up Time:		3	10	mS
Aging (PPM/1st Year): Ta=25C, Vdd=3.3V			±5	
Static Discharge Voltage Mil-Std 883, method 3015	2000			V
Output Load: * CMOS, < 40 MHz CMOS, ≥ 40 MHz			30 15	pF pF
Output Level:	PECL/CMOS			
Packaging:	25 / Tube Tape & Reel			14 pin SMD

Notes: Recommended .01 µF bypass capacitor from Vcc to GND. Capacitor should be as close to oscillator as possible.

* LV PECL outputs require an external termination network

 Communications Industrial

• High-end multimedia

- A/D converters
- Consumer Applications

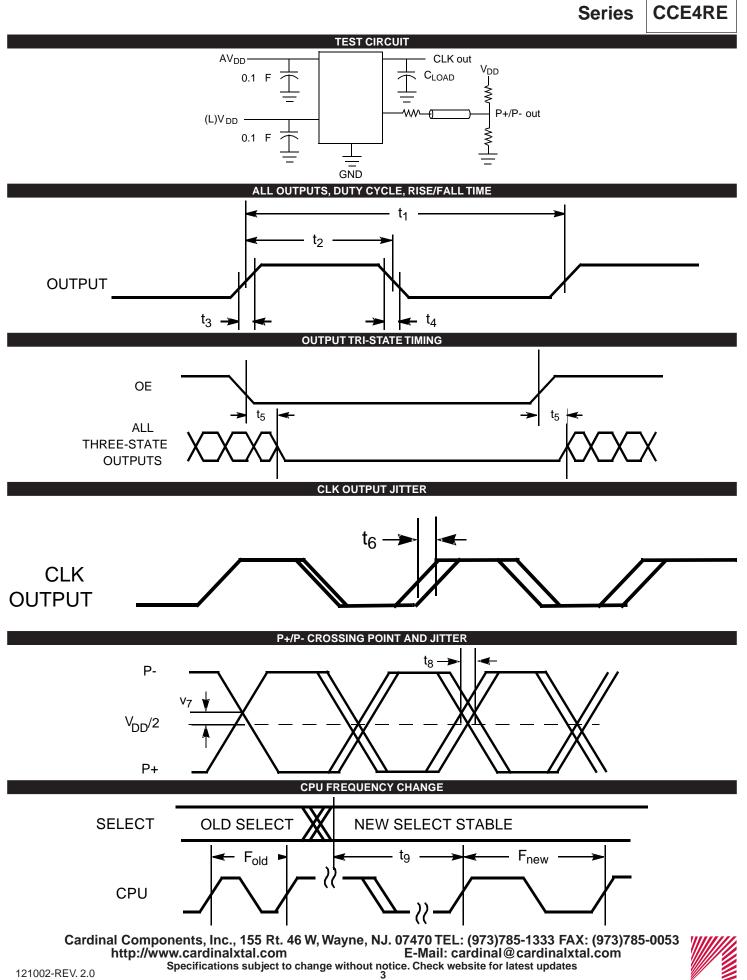
Re-Configurable 4 Output PECL Oscillator

Series

CCE4RE

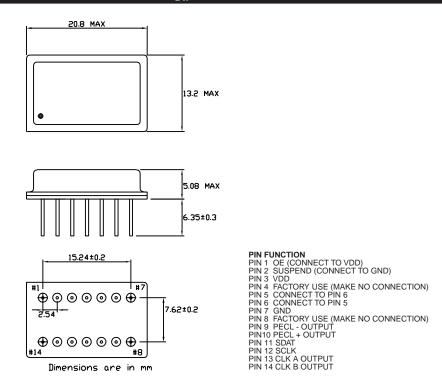
Electrical Characteristics

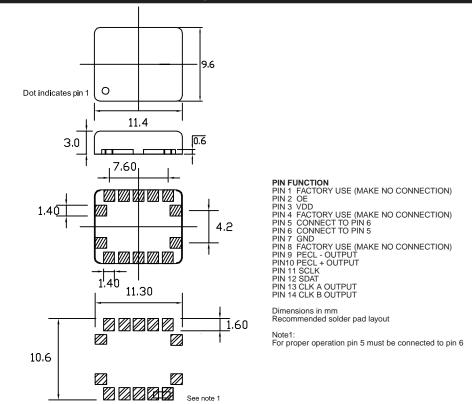
	DESCRIPTION	Conditions	MIN	Түр	Мах	Unit
loh	Output High Current	Voh = (L)Vdd - 0.5, (L)Vdd = 3.3 V	12	24		mA
lol	Output Low Current	Vol = .5, (L)Vdd = 3.3 V	12	24		mA
Vih	High Level Input Voltage	CMOS levels, % of Vdd	0.7			V
Vil	Low-Level Input Voltage	CMOS levels, % of Vdd			0.3	V
lih	Input High Current	Vin = AVdd - 0.3 V		<1	10	μA
lil	Input Low Current	Vin = + 0.3 V		<1	10	μA
loz	Output Leakage Current	tri-state outputs			10	μA
ldd	Total Power Supply Current	Example 1: 1 PECL output @155.52 MHz 1 CMOS output @19.44 MHz 1 CMOS output @38.88 MHz Example 2: 1 PECL output @400 MHz 1 CMOS output @106.25 MHz 1 CMOS output @53.125 MHz		26 48		mA
Idds	Shutdown Power Supply Curr	Shutdown active		5	20	μA


Output Clock Switching Characteristics

	DESCRIPTION	Conditions	Мім	Түр	Мах	UNIT
1/t1	Output Frequency	Clock output limit, CMOS, Commercial Clock output limit, PECL, Commercial	0.2 100		200 400	MHz MHz
t3	Rising Edge Slew Rate	Output clock rise time, 20% – 80% Vdd	0.75	1.4		nS
t4	Falling Edge Slew Rate	Output clock fall time, 20% – 80% Vdd	0.75	1.4		nS
t5	Output tri-state timing after SD/OE switches	Time for output to enter/leave tri-state mode		150	300	nS
t6	Clock Jitter measured at Vdd/2	Peak-to-Peak period jitter, CLK outputs		200		pS
v7	P+/P- Crossing Point	Crossing point ref. to Vdd/2, bal res. net	-0.2	0	0.2	V
	Frequency Switch Time	Change time		2	4	ms

CARDINAL COMPONENTS


Series



CARDINAL COMPONENTS

DIP

SMD

Cardinal Components, Inc., 155 Rt. 46 W, Wayne, NJ. 07470 TEL: (973)785-1333 FAX: (973)785-0053 http://www.cardinalxtal.com E-Mail: cardinal@cardinalxtal.com

1.4

Flash Programmability:

Non-Volatile programming enables easy customization, ultrafast turnaround, performance tweaking, design timing margin testing, inventory control, lower part count, and more secure product supply. In addition, any part in the family can also be programmed multiple times, which reduces programming errors and provides an easy upgrade path for existing designs.

Feature of the I²C-bus:

- Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL)
- Each device connected to the bus is software addressable by a unique address and simple master/slave relationship exist at all times; master can operate as a master- transmitter or as master-receivers
- It's a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more master simultaneously initiate data transfer
- Serial 8-bit oriented, bidirectional data transfers can be made at up to 100 Kbit/s in the standard mode, up to 400 kbit/s in the fast-mode, or up to 3.4 Mbit/s in the High-speed mode

Designer Benefits:

I²C bus compatible In Circuit Reconfigurable Oscillator "ICRO" allow a system design to rapidly progress directly from a functional block diagram to a prototype. Moreover, since they 'clip' directly onto the I²C bus without any additional external interfacing, they allow a prototype system to be modified or upgraded simply by 'clipping' or 'unclipping' ICRO to or from the bus.

Here are some of the feature of I²C- bus compatible ICRO which are particularly attractive to designer

- Functional blocks on the block diagram correspond with the actual ICRO designs proceed rapidly from block diagram to final schematic
- No need to design bus interfaces because the I²C-bus interface is already integrated on the ICRO
- Integrated addressing and data-transfer protocol allow systems to be completely software-defined
- The same ICRO types can often be used in many different applications
- Design-time reduces as designers quickly become familiar with the frequently used functional book represented by I²Cbus compatible and ICRO
- ICRO can be added to or remove from system without affecting any other circuits on the bus

In addition to these advantages, the CMOS ICRO in the I²C-bus compatible range offer designers special feature which are particularly attractive for portable equipment and battery-backed systems.

They All Have:

- Extremely low current consumption
- High Noise immunity
- Wide operating temperature range

Manufacturer Benefits

I²C-bus compatible ICRO don't only assist designer, they also give a wider range of benefits to the equipment manufacturer because:

- The simple 2-wire serial I²C bus minimizes interconnections so ICRO have fewer pins and there are not so many PCB tracks; result- smaller and less expensive PCBs
- The completely integrated I²C-bus protocol eliminates the need for address decoders and other 'glue logic'
- The multi-master capability of the I²C-bus allows rapid testing and alignment of end-user equipment via external connections to an assembly line
- I²C-bus handbook, I²C Website: www.semiconductors.philips.com/I2C

